Sparse Source Separation with Unknown Source Number

نویسندگان

  • Yujie Zhang
  • Hongwei Li
  • Rui Qi
چکیده

Sparse Blind Source Separation (BSS) problems have recently received some attention. And some of them have been proposed for the unknown number of sources. However, they only consider the overdetermined case (i.e. with more sources than sensors). In the practical BSS, there are not prior assumptions on the number of sources. In this paper, we use cluster and Principal Component Analysis (PCA) to estimate the number of the sources and the separation matrix, and then make the estimation of sources. Experiments with speech signals demonstrate the validity of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Separation of Infinitely Many Sparse Sources

This paper deals with the problem of underdetermined blind source separation (BSS) where the number of sources is unknown. We propose a BSS approach that simultaneously estimates the number of sources, separates the sources based on the sparseness of speech, and performs permutation alignment. We confirmed experimentally that reasonably good separation was obtained with the present method witho...

متن کامل

Bayesian Nonparametric Approach to Blind Separation of Infinitely Many Sparse Sources

SUMMARY This paper deals with the problem of underdetermined blind source separation (BSS) where the number of sources is unknown. We propose a BSS approach that simultaneously estimates the number of sources, separates the sources based on the sparseness of speech, estimates the direction of arrival of each source, and performs permutation alignment. We confirmed experimentally that reasonably...

متن کامل

Underdetermined blind separation of sparse sources with instantaneous and convolutive mixtures

We consider the underdetermined blind source separation problem with linear instantaneous and convolutive mixtures when the input signals are sparse, or have been rendered sparse. In the underdetermined case the problem requires solving three subproblems: detecting the number of sources, estimating the mixing matrix, and finding an adequate inversion strategy to obtain the sources. This paper s...

متن کامل

Over-complete blind source separation by applying sparse decomposition and information theoretic based probabilistic approach

Both in the case of cellular communication and in the case of spoken dialogue based information retrieval systems on mobile platforms there exist a number of interference signals. Therefore, it is essential to separate these interference signals from the intended signal(s) in order to have clear communication in the case of cellular phone and to improve the speech recognition accuracy in the ca...

متن کامل

Sparse Source Separation Using Discrete Prior Models

In this paper we present a new source separation method based on dynamic sparse source signal models. Source signals are modeled in frequency domain as a product of a Bernoulli selection variable with a deterministic but unknown spectral amplitude. The Bernoulli variables are modeled in turn by first order Markov processes with transition probabilities learned from a training database. We consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010